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in Dense Molecular Fluids
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Abstract

In the understanding of high-tcamperature and -pressure chemistry in
explosives, first step is the atudy of the transfer of energy from
tranglatioral degrees of freedom into interual vibrations of the molecules.
We present new methods using nonequilibrium molecular dynamics (NEMD) for
measuring vibrational relaxation in a dietomic fluid, where we expect a
classical treatment of many-body colligions to be relevant because of the
high densities (2 to 3 times compressed compared to the normal fluid) and
high temperatures (2000-4000 K) involved behind detonation waves. NEMD
techniques are discussed, including their limitations, and qualitative

results presented.



I. Introduction

The phenomena of energy-sharing among center-of-mass translational de-
grees of freedom and internal (rotatiounal and vibrational) degrees of
freedom in dense, hot molecular fluids are crucial to the understanding of
a variety of chemical explosive properties. We shall illustraste, in a
highly simplified wvay, the processes occurring in the passage of a steady
detonation wave in a condensed (fluid or solid) high explosive. First, as
we sit on some typical explosive (that is, chemically unstable) molecule, a
compressive shock wave arrives in the form of collisions from neighboring
molecules. Center-of-mass separations shrink, causing the density toc rise
sharply, along with the "temperature" in the shock propagation direction.
The "temperature" in the transverse directicns is cold at first, until
sidevays collisions cause translational kinetic energy in the longitudinal
direction to be fed iuto transverse (shearing) motion. Within one or two
mean collisinn times, all center-of-mass kinetic energies equilibrate, so
that in the sense of local equilibrium, we mey speak more correctly about
temperature. Soon thereafter, rotational motions of the molecules also
equilibrate, leaving only internal vibrations of the molecules relatively
"cold". If the molecule is fairly complex, there will exist
lower-frequency bond-bending modes that are more eanily excited than the
bigh-frequancy bond-compression modes. The cioser two frequencies axe, the
easier it is for thems to "talk" to each other, i.e., to transfer energy;
this resonance phenomenon occurs both classically and quantum-mechanically.
Thus a sequence of ¢nergy transfers will oconr, c¢limbing s ladder in the
frequency domerin: the lowest frequency modes to be equilibrated are
translationsal, followed rougkly by rotstions, bond-bending, and finally

bond-otretching vibrations.



The latter vibrational temperature may take a long time to equilibrate.
Our aim is to understand the time (and also, the mechanisms) it takes for
energy from a shock front to be transferred into molecules, in order to
prepare them for the highly-excited vibrational states necessary for
electronic rearrangement (chemical reaction) to occu.. Once electronic
states are significantly perturbed through vibrations, chemical emergy in
unstable bonds can be released, which drives the detonation -- in effect,
providing the piston for the shock wave. (f conrse, this is undoubtedly a
terribly oversimplified picture of the time-scales in high explosive
detonations. (We have said nothing about the effect of inhomogeneities,
for example.) Nevertheless, the statistical process of energy transfer from
center-of-mzas collisions at high density up through the frequency ladder
into internal vibrations must be understood before we will have even a
rudimentary understanding of tue kinetica of explosive chemical reactions.

Because of the high densities involved in this picture of detonations
in condensed explosives, we are forced to consider many-body effects --
there are no isolated binary collisions between molecules. Because of the
high temperatures involved, we suppose that even if binary collisions were
appropriate, the most efficient energy transfer would occur when the
relative kinetic enexgy of a colliding pair of molecules is several times
kT; therefore, at these temperatures, it is plausible quentun effects on
vibrational relsxsation sre small. The mcthod uf molecular dynamics (MD),
where the classical many-body problem is solved numerically, is the npnly
tool available for studying vihrationa. relaxation in dense, hot molecular
fluids.

MD has teen sucress’ ully applied and eqrilibrium probleri. ' ven though

it is intrinsically a t!me-dependent method, as distinct from Monte Carlo,



vhere configurations are generated so as to sample frow a canonical
ensemble. The principal limitaticon to MD in equilibrium problems has been
the smallness of systems considered, N ~ 100-1000 molecules. At pormal
fluid densities, such a small sample would not possess properties at all
close to bulk values. With the surfr.ce skin depth given by the range of
interatomir forces, if 100-1000 particles were placed in 2 box with rigid
walls, the walls would demonstrate he results -- everything would be
surface; there would be no bulk to speak of. Periodic boundary conditions,
where the "box'" of N particles in volume, V, is surrounded by an infinite
periodic array, or checkerboard, of zuch systems, removes this surface
problem to such an extent that corrections to equilibrium properties are of
velative order 1/N. In nonequilibrium molecular dynamics (NEMD), where,
for example, a fluid is sheared by moving two parallel walls in opposite
directions, similar wall, or surface effects are seen. The shear viscosity
is given by the shear stress sveraged over time, divided by the steady
shear rate. If, instead of moving walls, homogeneous external forces are
applied to particles throughout the fluid, the resulting shear viscosity
(in three dimensions) is noticeably more independent of system size. Thus,
both equilibrium and steady-state time sverages are reliably obtained by MD
or NEMD. What is not as clear, however, is whether truly time-dependent
properties, such as a relaxation time (or its inverse, the relaxation
rate), can be reliably obtained. In equilibrium svstems, fluctations about
equilibrium yield time correlation functions, where the influence of
periodic boundary conditions can affect the results for times longer than
that for a sound wave to cross the system. In nonequilibrium systems, not
only are the correlations between periodic cells of concern, but also the

effect upon rates due to external forces must be taken intc account. One



of the aims of this paper is to show just how such problems in NEMD can be
carefully resolved in order to obtain believable results for nonmequilibrium
rate processes.

In this paper, we will concentrate on a relatively simple problem. We
will study the rate of energy transfer from translastional and rotational
degrees of freedom into bond SEBration in a bot, dense diatomic molecular
fluid. We bave chosen a potential energy surface (aee Appendix) that is a
reasonable approximation to nitrogen (Nz). In addition to temperature and
density, we can vary the bond vibrational frequency to study its effect on
the rate of relaxation. Typically, we are coacerned with Nz at 2 to 3
times normal fluid density (-~ 2 g/cna), temperatures of 2000-4000 K, and
pressures of 200-300 kbar, that is, states like those achieved behind de-
tonations of high explosives. For the purposes of this study, we will
assume and that our idealized diatomic molecular flvid is dense but
isotropic, that is, if a shock wave has passed through, the shear stress
has been relieved by viscous flow, and that the temperatures in the 3
translational and 2 rotational degrees of freedom have equilibrated to a
high value, while the vibrational temperature is at. the low ambient value,
i.e., room temperature (390 K). The process whereby the temperature in the
bond-vibrational and the 5 other "external" modes, or reservoirs, come to
equilibrium isoenergetically will be referred to as "adiabatic". The most
important issue to be considered in adiabatic relaxation is whether it is
correct tc ouppose that the vibrational temperature Tvib relaxes
exponentially from its cold initial temperature To to the final equilibrium
temperature T with some characteristic relaxation time T,

ib’

Tvib(t) =T- (T - To)exp(-t/tvib) . (1)



The vibrational relaxation rate vv is then obtainable from the initial

ib

temperature increase

v =v! = T_vib_(ff (2)
vib = “vib T T - T° :

Equation (1) csn only make sense if the vibrational mode equilibrates with
the external reservoir at fixed temperature T, which in the adiabatic case
is both the final temperature and the average, neglecting potential energy

redistribution:

STx(t) + Tvib(t) = 6T

One could argue that Eq. (1) is therefore not valid for sdiabatic
relaxation, since the vibrational reservoir does not equilibrate with
itself, even insofar as its contribution to the average temperature T, but
rather with a continuous sequence of external mode temperatures from Tx(O)

down to T. Equation (2) would then have to be replaced by

T . (¢)
- vib
Voip[Tx(€)] = T (6) - T (6) ° (2e)

which describes a complex multi-temperature relaxation process. An unam-
biguous rate could then be ~btsined only at t = 0. (See Fig. 1 for an
illustration of totslly adiabatic response of the vibrationsl and external
reservoirs.)

Since tlLe adiabatic response gives only the initial reote in a

straightforward manner, some of the ambiguity cen be eliminated by



thermostatting the external reservoir at temperature Tx = T, leaving the
vibrational temperature to rise to To to T in a partially adiabatic manner.
(See Fig. 2 for an illustration of partial adisbatic response of the
vibrational reservoir to a fixed external reservoir temperature.)

a reservoir can be fixed at constant temperature Tx = T by several
means: isokinetic thermostatting (either by Gaussian constrained
dynamicsl.'b or its equivalent for small time-steps, velocity scaling,lc to
achieve a perfectly constant kinetic energy in the external reservoirs),
Andersen stochastic tbermostatting2 (where velocities are randomly reset
from a Maxwell-Roltzmann distribution), on Nosé-Hoover feedback
thermost.atting3 (where the equation of motion of an extra degree of
freedom -- the thermostatting coefficient £ -- is included in the
dynamics).

By completely thermostatting the vibrational degree of freedom at the
low temperature 'I‘° and the other degrees of freedom at the high temperature
T, we eliminate the ambiguities of multitemperature rates aentioned above,
and the problem is reduced to measuring ivib(o) in Eq. (2) as a time aver-
age of the apprcpriate quantities, depending on thermostatting mechanisms,
over long enough times in a . teady-state nonequilibrium system. 1In the
following sections, we will discuss each of the methods outlined above and
present results for our idealized dense, hot molecular fluid.

We can already point out some qualitative fcatures of vibrational re-
laxation in these systems: the rate Yuib decreases exponentially with the
vibrational w, of the bond, Yoib increases faster than linearly with densi-
ty; Yoib increases with temperature qualitatively like an Arrhenius law,
namely an exponential of minus the inverse temperature. We emphasize that

our interest is in dense, hot fluids where we suppose that quantum effects



are small (that is, the collisional velocities that transfer energy most
efficiently correspond to several times kT, or in other words, sample thke
wings of the Maxwell-Boltzmann velocity distribution) and that isolated
binary collisions are inappropriate at these high densities to account for
the relaxation phenomenon. Nevertheless, the techniques developed here may
be applicable in other regimes as well. Finally, we show that the Nosé-
Hoover thermostat possesses superior characteristics for measuring rate
proceeses, including the capability of extrapolating out its effect
altogether, compared to Andersen's stochastic thermostat or the Gaussian
isokinetic thermostat.
II. Methods

In this section we describe the NEMD methods we bhave developed for
atudying vibrational relaxation. First, the common element to all these
approaches is the absolute necessity for transforming from the six
cartesian atomic coordinates (;1,;2) of each diatomic molecule to three

center-of-mass (ﬁ) and relative (:) molecular coordinates:

Hﬁ =m z +m ;

171 2°2 '
+=+ -+
r r2 r1 ’

where the atomic masses (ml,mz) are related to the total molecular mass by
M= L + m, and to the reduced mass by y = mlmZIH. The kinetic energy of
the syastem can then be partitioned into 3(N-1) tranclational (total linear
momentum N;o = I; = 0), 2N rotational, and N vibrational degrees of

freedom:



N 2 .
K= 3 3 im Iz |2
, 2 a isa
i=] a=l1
N L] -
_ 1 2 1 = 2
= I ZHIR I+ 5w
i=1
= trans + Krot + Kvib !

wvhere in the thermostattec steady state the time averages <...>ss of kinet-

ic energies are related to the temperatures by

_3 o
Kirans'ss - 2 (N - DT,
<K > =NkT |,
rot ss
<K_..> = LNkT
vib ss 2 o

It is essential to partition kinetic emergy into these natural molecular
reservoirs in order to thermostat the vibratiopral temperature at the lower
value T° and the external temperatures (translational and rotational) at
the Ligher value T. The atomic cartesian reservoirs simply will not
control the temperatures, even for the relatively simple case To = T; the
vibtrational temperature for reasonable bond force constants (much larger
than intermolecular) stubbornly refuses cc equilibrate. The center-of-mass

and relative forces (dropping molecular index i) are then
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The relative velocities and forces can be further decomposed into

componernts parallel and perpendicular to the bond, where the unit vector

- > >
along the bond is r = r/Ir]|, e.g.,

-. * ~ A

r =(r - x)r ,
3 3 -

r =r-~r ,

the vibraticnal and rotational velocities, respectively.

The thermostatted equations of motion for each reservoir can be writ-

ten in the form:

-
i

F-§P ’ (3

where the coordinate is q and momentum is p; F is the force, which in our

model is assuamed tc arise from atom-atom intermolecular interactions plus

an atom-atom bond potential (see Appendix for details). The thermostatting
- _ -1

coefficieat £ is related to the relaz:ation rate “vib (—tvib ) by noting

that
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k=3 B
K=12 m P
=3 R (F -
=2 (F - &p)
= JFq - 2K¢ . (4)

At the thermostatted steady state

<K =0 <zrq>ss - 2<1(g>ss

<K(o)>ss - 2K0<£>ss i

where we have made the identification that the initial adiabatic (£=0) rate

is

(g is the number of degrees of freedom, e.g., g = N = number of molecules

for vibration), so that

<K(°)>sn <Fq>us

Then,

<T(0)> 2T0 <f> ,
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which, with Eq. (2) gives

v

- 2<Evib>us
vib T

.I'.—'-l

o

We use this equation for both the Gaussian isokinetic and Nosé-Hoover iso-
thermal methods. The physical interpretation is that for the lower vibra-
tional temperature To < T, the thermostatting coefficient is positive,
<§>ss > 0. Collisions tend to drive thc vibrational kinetic engrgy up, on
the average, <F&> > 0, while the thermostat bleeds vibrational ginetic
energy away, much like linear viscous damping. Of course, the small gys-
tems we studv have large fluctuations, so that at times, { behaves like
viscous "undamping." Thermostatting is essential, even for preparing the
initial state for adiabatic response methods, but we begin by discussing
adiabatic relaxation methods, followed by the inokinetic method of
thermostatting, Andersen stochastic thermostatting, and finally Nosé-Hoover

feedback thermostatting.

IIA. Adiabatic Relaxation

The method for measuring adiabatic relaxation is to select a state
from a constrained nonequilibrium simulation, as described in the next
threee sub - sections for example, as an initial condition for standard MD
(Newton's equations of motion). With the thermostatting constraints en-
tirely removed, so that the vibrational temperature can rise to T from To
and the external temperature can drcp to T from Tx' the typical adiabatic
response is shown in Fig. 3. Also shown is the difference in response that
occurs when only the vibrational thermostat is turned off (labeled partial

in Fig. 3). The partial adiabatic realization was obtained, as was the
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former, from a Nosé-Hoover NEMD experiment (see Sec. IID) with
thermostating rates “Tto = 10 in the external reservoirs as well as in the
vibrational mode; the external reservoir tempcrature was set and maintained
at Tx = 4000 K while the vibrational temperature was set at T° = 300 K; at
the beginning of the partial adiabatic run, only the vibrational thermo-
statting rate was set te zero, while in the total adiabatic run, all ther-
mostatting was turned off.

Initially, for both realizations, the vibrational temperature is
identical, with detectable differeuces appearing after 0.1 - 0.2 to. After
approximately one relaxation time, the partial adiabatic response has
clearly risen well beyond the fluctuation level above the total adiabatic
response, the latter having slowed down by virtue of the drop in the exter-
nal temperature (initially, Tx = 4000 K, finally T = 3400 K). If the vi-
brational relaxation rate exhibits au Arrehenius behavior appropriate to a

thermal activation mechanism,

-O/Tx

(T) = v, (®e :

vvib vib

vhere Tx is the external temperature, then the difference in the two curves
in Fig. 5 can be reconciled if the activation temperatur: 6 is roughly
18,000 K and the vibrational relaxation in the partial adiabatic case is
sinple exponential (no dependence on Tvib)' This estimate is a reasonable
one in view of a body of calculations we have done at different tempera-
tures. Thus we can answer the question, V,ib is a function of what tem-
perature? -~ the external temperature (translation and rotation).

The main practical difficulty of measuring the vibrational relaxation
rate by the partial sdiabatic method, which, at least, ir a one-temperature

process as we have just seen, is illustrated in Fig. 4. The two curves
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shown differ only in the initial phase, chosen from a Nosé-Hoover thermo-
statted run: in one case, the vibrational thermostat was turned off at

t =40 t,s in the second, t = 39 t, It is clear that one must average
over an ensemble of starting times in order to sort out the consideiable
effects of fluctuatione on the measured rate of vibrational relaxation.
Even the curvatures of these two traces are different, the latter being
tion. We are thus led to the thermostatted methods of the following sub-
sections for reliable measurements. The motivation for these methods is to
replace an ensemble average over starting points with a time average over a
continuously-restarted steady-state experiment.

I1IB. Isokinetic Thermostatting

There are two forms of isokinetic thermostatting, where the kinetic
energies of each of thc reservoirs -- translational, rotational, and vibra-
tional -- are kept constant. Historically, the first method to appear was
velocity lcalinglc. In finite central difference form. Newtons's

equations of motion are written

2
Aq, = Aq_ + FAt /m ,
with displacements evaluated halfway between time steps Aq, = Aq(t T MAt)
and the coordinates given by q(t + At) = q(t) + Aq(t + hAt); the force is
evaluated at time t. In velocity rescaling, the displacement Aq+ is scaled

so as to fix the total kinetic energy for a given reservoir:

Aq; = «Aq+ '

where a is the velocity scaling factor. At time t + BAt, the kinetic ener-

gy is equal to the preset value Ko, Just as it was at time t -~ hAt:
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2
%]
=31 _+
K=12 2B —5
At
2 1 +2
S L o
At
2 1 Aq-z
a Zim 3 + 2FAq_ +...
At
_ 2
a (l(° + IFAq_ +...)
=](o ’
whence
IFAq_
a=1- =g
o
IFq_
=1-AtT+ ’
o

l1a,b

The Gaussian feedback equations of motion are embodied in Eq. (3).

In finite difference form, with q(t) = Aq/At and Aq = 4(Aq, + Aq_):

Aq = Aq + FAtZ/m - {Aqat
+ -
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(1 - 7 &At)Aq_ + FAt?/m

1
1+E€At

(6)

Sipce K = Ko is the fixed value of the kinetic energy, we may set K = 0 in

Eq. (4) to get the thermostatting coefficient

Clearly, for small time steps, the Gaussian feedback and velocity scaling
methods are identical, with the velocity scaling factor given by a =

1- EGAt + ... . Since velocity scaling is a somewhat simpler scheme to
implement, we evaluate the vibrational relaxation rate by the equivalent

form of Eq. (5):

a2 -

Yvib © ae(T/T, -1)

The adiabatic methods for our small (N=108) systems are quite noisy,
A8 we have seen in the last subsection, but the isokinetic rate as computed
from the ubove equation is eslmost a factor of two higher. The flaw in the
isokinetic thermostatting method is that it is impossible to separate out
the effects of thermostatting on rate processes. That is, the measured
rate of vibrational relaxation could verv well be the sum of two terms:
the underlying, unthermostatted (adiabatic) rate, plus a contribution from
the thermoctatting process itielf. The homogeneous intrusion into the
dynamics, small though it may be, alters the velocity distribution

function. If the slteration affects the high-velocity wings of the
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distribution vas it most surely does), then the rate is also affected,
since h. gh-veiocity collisions the most efficient means vf energy transfer.
The foilowing tihermostatting schemes have this same limitation, but their
degree of intxision into the usual dypamics can be varied, unlike the
isokinetic metheds.

I1IC. Andersen Stcchastic Thermostatting

In a landmark paper, Andersen2 showed how velocities in MD could be
sltered in a stochastic way, so that time averages along an equilibrium
"trajectory" give the same values as the canonical (NVT) ensemble, rather
than the usual D ensemble (NVE, N;o = 0) values. The stochastic
prescription is to select particles at random at a thermostatting rate Vp =
lltT, such that o fraction of particles vTAt = AN/N per time step At have
their velocities reset from a Maxwell-Boltzmann velocity distribution with
temperature TO; i e., if random nvaber i(1 =1, 2, ..., N) uniformly
distributed betwesn O and 1 satifies 1 '7 < At, then reset the displacement

by the Box-Muller ttansformation4 (uniform - to Gaussian-distributed random

variables)

cos 2n "
! .
Aq, = A(-Lnf")* -
sin 2n " ,
vhere ' and " are a pair of random numbers uniform on the interval [0,1]

and A = At(2kT°/m)~ ensures that the long-time average of K is hngo:
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1
<K>=3I=
K> b3 3 @

g

<-fn °> °% <co% 2n " + si% 2n ">

n
o
N

2At

N

gkT

since <-£n > = 1.

There are three serious objeactions to this method of thermostatting.
First, if the rate of thermostatting Yy far exceeds any natural rates, such
as the collision rate, particles will rimply jiggle furiously about their
current positions, diffusing very slowly in configuration space, while
executing the expected canonical fluctuations in momentum space. Since all
of phase space must be accessible at equilibrium, it will take a very long
time to obtain canonical ensemble averages as trajectory time averages in
the limit Vp > ®. Second, if Vo is toc slow compnred to the collision
rate, an inordinate amount of time may be spert waiting for momentum-space
transients to settle down, especially in the nonequilibrium cases. Even
thougk Andersen proved that his procedure would give correct canonical
ensemble results, he did not guarantee that it could be done in less than
infinite time -- an explicit statement of ergodicity problems in the either
limit Uy + 0 or Vp + o, The infinite time required to achieve either
equilibrium or s nonequilibrium steady state is a serious practical
limitation. These ergodicity difficulties can be overcome by choosing Vp
to be nnt too far from the collision rate, avoiding both v, = 0 and v, = @

T T
limits.
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The third, and perhaps most serious objection to the Andersen thermo-
statting procedure is illustrated in Fig. 5. In a nonequilibrium experi-
ment, the Anderser thermost:it fails to maintain the vibrationsl temperature
at its preset value To' (Berendsen's deterministic scheme5 also has this
shortcoming.) The problem is not simply one of waiting long enough for a
transient to settle down, since the temperature has fairly quirkly (i.e.,
on the order of tT) reached a8 steady state value To' > To' The relaxation

rate vvib(T, vT) is given then by

<AK

. . \ >

% k(T - To )vvib = l<\7i.b(o’ = Ve
8

5 I

vhexe Axvib =1k p(Aq‘2 - Aqiz)/Atz‘is the change in kinetic cnergy due to
resetting the displacments frow Aq, to Aq:. However, if higher-order ef-
fects make Yuib also dependent upon To' in this example, or if one had
bhoped to characterize .he nonequilibrium steady state before, rather than
after the fact, then the Andersen thermostat is inadequate to the task. In
the next subsection, we present a deterministic (feedback) method which
overcomes this last objection.

IID. The Nosé-Hoover Thermostat

3a derived a deterministic method of

Following Andersen's work, Nosé
generating isothermal trajectoriesn. He proposed a Hamiltonian internal
energy function involving an extrs coordinate and conjugate momentum,
whereby time averages over the remaining coordinates and momenta (those of
the usual N-molecule many-body system) yield canonical-ensemble averages
and fluctuatations. In a further simplification, Hoover3b showed that only

a single extra variable, the thermostatting coefficient { that appears in

the equations of motion [Eq. (3)], is necessary, along with the assumption
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of a canonical distribution function and its stationarity at equilibrium.

The resulting equation of motion for § is then shown to be:

o 2 -
E=v Kk -1) . €2

The thermostarting rate is “T' analogous to the Andersen stochastic proce-
dure. We have aready dasrived an expression for the vibrational relaxation
rate, given the steady-state nonequilibrium value of Evib’ namely Eq. (5).
It ie clzar from Zq. (7) thet at the steady state <€vib>ss = 0, sc
that <Kvib>su = Ko. In other words, the deterministic thermostat of Nose
and Hoover is abie to maintain the ismperature at its preset value. This
is illustrated in Fig. 6 for a situation very closely parallel to the ex-~
ample of ths Andersen thermostat in Fig. 5. Note that when the thermostat-

ting time constact has been switched from 1., = 0.1 to 0.5 at t = 0, there

T
is a transient response that settles ocut in a few timer IT'

Again, as in the Andersen method, the limits “T + 0 or VT + ® pose
ergodic hazarde to the comp itation of the vibration relaxation time by this
homogeneous method. Spurious results can be obtained when the
thermalizatiou rate is too much higher than collision frequencies (vT *
w).6 At the other extreme, one must average over very long times, both to
be sure that transients have died out and to compensate for larger
fluctuations in §: at equilibrium since § is Gaussian-distributed, one can
show that <52> - <£>"Z = 1/gtT2. This is also true, to a good
approximation, away from equilibrium, where <> # 0. Nevertheless, over a
certain range of thermostatting rates, we expect that the vibrational

relaxation rate determined by our method can be represented by a linear

relation:
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Voip(Vp) = v, (0) + avy (8)

That means that the effect of the thermostat on the intrimsic rate process
can be extrapolated away.
II1. Results

In the previous section, we have presented some qualitative results
for each of the NEMD methods presented. In this section, we compare
methods and use them to discuss certain physical features of vibrational
relaxation in dense molecular fluids.

In Fig. 7, we shew the dependence of the ribrational relaxation rate
on theimostatting rate for the Andersen stochastic and Nosé-Hoover
deterministic thermostutting schemes. Also shown at zero thermostatting
rate are the results for adiabatic response amd Gaussian isothermal methods
(of course, the latter is really an infinite-rate rather than zero-rate
procedure). Notice that, in agreement with Eq. (8), both Andersen and
Nosé-Hoover appear to extrapolate to the same value of vibrational
relaxation rate in the adiabatic (zero thermostatting rate) limit, though
the slopes differ dramatically, with the slope in the Andersen method 40
times that of the almost-flat Nosé-Hooever method. The reason for this
dramatic difference in slopes is almost surely due to the difference in
smoothness of the trajectories: the Andersen method arbitrarily and
abruptly resets velocities, often as not rammiang molecules into one another
in a way inherently far less gentle than the gradual effect of feedback in
the Nosé-Hoover method. It is nevertheless comforting that the two methode
give the same adiabatic limit, since at least at equilibrium they generate

the szme long-time sverages, namely, cwunonical averages. This limiting
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value is somewhat above the two adiabatic NEMD results; however, it is
doubtful that the discrepancy is statistically significant. In order to
convince oneself of the significance, an ensemble of adiabatic experiments,
rather than only two, would need to be performed. The Gaussian isokinetic
result is, however, significantly higher than the adiabatic experiments, by
almost a factor of two, and is also higher than any of the Nosé-Hoover
realizations, as might be supposed from the relr .ive "stiffness" of the two
feedback methods. That is, the Gaussian method rigidly clamps the kinetic
energy at a firxed value, with no fluctuations allowed, while the
Nosé-Hoover method allows the value to fluctuate about the set value for
characteristic times of the order of the thermostating time constant.
Nevertheless, the Gaussian method, being Jetermipistic, is gentler than the
stochastic method and gives a lower measured vibrational reclaxation rate
than the Andersen procedure.

These results cdemonstrate that the Nosé-Hoover method gives
essentially the adiabatic vibrationul relaxation rate without need for
extrspolation to zero thermostatting rate, while it is absolutely essential
to perform such an estrapolation with the Andersen procedure. The Gaussian
method, on the other hand, affords no clue as to the underlying adiabatic
rate except to overestimate it. As long as the Nosé-Hoover thermostatting
rate is neither largé compared to the vibrational frequency, pnor too small
cowpared to the collision frequency, it is the method of choice among the
thermostatting procedures presented here. The total adiabatic response
mecthod gives a rate that decays with temperature, so that its main utility
is to show that the one-tempersature partial adiabstic method gives the
correct initial rate. Unfortunately, the severe dependence on initial

conditions for these small systems (N = 108 molecules), makes it necessary
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to perform an impractically large ensemble of partial adiabatic experiments
in order to glean the true adiabatic vibrational relaxation rate by this
NEMD method. It is comforting to note (at these densitites at least) that
the results for N = 32 are not noticeably different.

In the remainder of this paper, we will discuss the qualitative
features obtained from several adiabatic response experiments. As
indicated above, the absolute values of relaxation rates may be suspect,
but the trends we will point out are nevertheiess valid. First of all, our
calculations indicate that the rate of vibrational relaxation drops
exponentially as the frequency W, of the bond vibration increases. For
example, at the state pouint examined in the previous examples (p =
2.3 g/cm3, T = 4000 K, To = 300 K), the rate for w, = 322 THz was ~ 0.05
t;I, while at w, = 444 THz (appropriate to NZ) the rate is an order of
magnitude smaller. This exponeatial dependence of energy transfer upon
frequency is typical of resonance phenomena. Second, the temperature
dependence of vibrational relaxation is approximately Arrhenius. This is
pot to say that the rate is sufficiently accurate to rule out a
Landau-Teller7 [exp-(ﬂ/T)lla] or some other prediction of temperature
dependence. Third, the density dependence of the Arrhenius activation
temperature is well-approximated by a quadratic function of inverse
density. The density dependence is far from linear, that is, isolated
binary collisions provide an inadequate description of vibrational
relaxation in dense molecular fluids. In future publications, more details
of numerical results will be presented.

IV. Conclusions

Vibrational relaxation in dense molecular fluids can be best studied

by homogeneously-thermostatted nonequilibrium molecular dynamics, using the

deterministic Nosé-Hoover equations of motion. For thermostatting rates
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lower than the collision rate, the intrusion of the thermostat on vibrarand
relaxation rates is linear. Andersen's stochastic method of
thermostatting, like the Nose-Hoover method, allows cne to extrapolate away
the effects of thermostatting upon nbnequilibrium rate processes, though
the stochastic intrusion is much more drematic but Andersen's method does
not maintain the temperature at a predetermined value. Gaussian isokinetic
thermostatting is not useful for determining vibrational relaxation rates,
since there is nn straightforward way to separate out the effects of
thermostatting. For small systems that are practical for molecular
dynamics studies, total adiabatic relaxation is complicated by the fact
tkat the rate is temperature-, and therefore time-dependent. When all but
the vibrational temperature is thermostatted (partial adiabatic
relaxation), the rate is time-independent, but difficult to measure because
of the inherent noisiness (fluctuations) and strong dependence on initial
conditions in these small systems. Qualitative features of vibrational
relaxation in dense molecular fluids, to be described in more detail in
future work, have nevertheless been pin-pointed, namely, the exponential
dependence of rate on vibrational frequency, the nonlinearity of the
density dependence, and the approximate Arrhenius behavior, suggesting a

thermally activated mechanism.
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Appendix: Fotentials

The potential energy of the system of N molecules is assumed to be

represented by

1 { 2 2 N
== 2 z b3 I ¢ (r L)+ X é(r. )y
2 421 g#i oa=1 bm1 2P mObT o, THiL2
where

_ l-’ -» l
Tia,jb = 'Tia Tjb
are atom-atom distances, ¢ab is the unbonded atom-atom intermolecular

potentisl of the exponential-six form

r
3 9 0.6
¢, (r) = 5¢ {6 exp[d(l-;;)] ~a(=)}
with e/k = 27.28 K, r, = 3.842 R, and o = 13.16 (these parameters fit
configuration interaction calculationss for Nz, except that ¢ is scaled by
0.8 80 as to fit experimental shock-wave data; the equilibrium bond length
is r = 1.098 R), and ¢ is the intramolecular (bond) potential of the Morse

form

#(r) = D_{1-expl£(1 -5;)1}2 .

with D /k
e

114,950 K and § = 2.952 (these parameters fit spectroscopic
dltn9 for Nz). By v.rying De and fixing r, and {, we are able to alter the
effective frequency of the bond from the N2 value w, = 444 THz by the

relation (p = 7.00335 amu is the N2 reduced mass).

2, 2.&
w, = (2D _£"/kr ).
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Fipure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Fi;ureks.

Total adiabatic response of the vibrational temperature Tvib
as a function of time t. The external degrees of freedom begin
the equiliration having been thermostatted at a high temperature
Txy' while the vibrational degree of freedom has been
thermostatted at a low temperature To' At t = 0, thermostatting
is stopped and all degrees of freedom relax toward the final
temperature T, where 6T~ 5Tx + To' The initial relaxation time
Tvib is shown.

Partial adiabatic response shown as exponential vibrations
relaxation process, Tvib (t). (See Equation 1 in text). The
external degrees of freedom Eontinue to be thermostatted with the
vibrational thermostat turned off at t = 0 (compare with Figure
1).

Adiabatic relaxation from the thermostatted initial state:
partial, i.e., translation and rotation thermostatted (-); total
i.e., no thermostatting (---). Fluctuations have been t/tb
reduced by coarse-graining into bins of 20At (At = 0.0025 to).
Differeﬁce in partial disbatic relaxation due tc initial
conditions: initial phase chosen from Nos;-Hoover run at t = 40
t's (-); initial phase at t = 39 to (---). Fluctuations reduced

by coarse graining (see Figure 5).

Inability of the Andersen thermostat to fix the vibrational

tempe-ature T 300 K (T T e 4000 K) in a

trans rot

v. 1 zo0.5¢).
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nonequilibrium simulation (tt t
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